
F05604-95-D-90011

Simulation Performance Optimization
Using Multivariate Minimization Techniques

James C. Eamon & Dennis R. Ellis
Joint National Test Facility CRDC/TISA

730 Irwin Avenue, Schriever AFB, CO 80912
jeamon@jntf.osd.mil

dellis@jntf.osd.mil

Keywords:
Performance, wargame, simulation, SPEEDES, minimization, PDES

ABSTRACT

The current generation of wargame simulations under development at the Joint National Test Facility
must provide real-time performance in large-scale Theater Air Missile Defense exercises. These simu-
lations are based on discrete event simulation frameworks, run in a parallel mode across multiple proc-
essors, and employ optimistic time management methods to improve performance and synchronize event
processing. The performance of these simulations is dependent not only on the size of the scenario being
studied, but also on the manner in which the simulation processes are distributed among the multiple
processors and the various tuning parameters that control the time management techniques. This paper
describes a study that explored the use of numerical multivariate minimization techniques to optimize
these tuning parameters in order to enhance the simulation performance. Similar techniques were ap-
plied to determine if an optimum method could be found for distributing the simulation processes across
multiple processors. An additional benefit of the study was the evaluation of the feasibility of dynami-
cally adjusting the time synchronization parameters during the course of the simulation.

INTRODUCTION

Wargame 2000 (WG2K) is a real-time simula-
tion under development at the Joint National
Test Facility (JNTF) to evaluate future ballistic
and theater missile defense architectures, defense
doctrine, and concepts of operation. The per-
formance requirements for WG2K are much
more demanding than those of previous simula-
tions in terms of the number of entities that are to
be modeled, the level of fidelity, and the speed at
which the models must run. It is estimated that in
some scenarios, WG2K will have to process
hundreds of thousands of events per second un-
der peak loads while meeting real-time con-
straints. The WG2K developers are exploiting
several innovative simulation techniques to meet
the demanding performance requirements, in-
cluding:

• Processing simulation events in a parallel
fashion by distributing them simultaneously
across multiple processors,

• Using “discrete event” (rather than discrete
time) simulation methods, and

• Employing optimistic synchronization
strategies for event flow control

These techniques offer the opportunity for sub-
stantial gains in efficiency and scalability, but as
one might expect, there is some risk that their
misuse may limit the gains that might otherwise
be achieved. Unfortunately, the guidelines for
implementing the methods in wargame simula-
tion applications are not well defined. As experi-
ence is gained in their use, it is expected that
these guidelines will become more apparent.

The Technology Insertion Studies and Analysis
(TISA) group at the JNTF is investigating how
performance is affected by scenario size, distri-
bution of processes across processors, and the
values used to “tune” the time management pa-
rameters that control event synchronization. We
have explored several methods to enhance
WG2K performance and provide automated
techniques for determining the optimum proces-
sor allocation and time management tuning pa-
rameter values. The study used the same Parallel
Discrete Event Simulation (PDES) framework
used by WG2K, namely the Synchronous Paral-

F05604-95-D-90012

lel Environment for Emulation and Discrete
Event Simulation (SPEEDES) [1].

 BACKGROUND

SPEEDES implements the distribution of proc-
esses across processors and the event synchroni-
zation among nodes. It provides event flow con-
trol in terms of memory usage, anti-messages,
and the aggressiveness of the optimistic event
processing. The algorithm used to implement
the optimistic event processing and synchroniza-
tion in SPEEDES is called “Breathing Time
Warp” (BTW) [2]. It is an extension and merger
of two other optimistic time management algo-
rithms: Time Warp [3] and Breathing Time
Buckets (BTB) [4]. It is claimed that Breathing
Time Warp has the efficiency gains of the Time
Warp scheme, while avoiding the risks that the
simulation gets bogged down in rollbacks and
anti-messages. The phases of a typical process-
ing time cycle in the Breathing Time Warp time
management scheme implemented in SPEEDES
are shown in Figure 1.

The BTW scheme processes events in time cy-
cles like the BTB except that the cycle times are
not constant, but adapt to the processing load.
Every cycle starts in the risky Time Warp mode
where the first Ngvt events beyond Global Virtual
Time (GVT) have their messages sent out imme-
diately. GVT is the minimum time tag of any
unprocessed event in the queue. This means that
these messages might have to be cancelled if this
node subsequently receives a message with a
time stamp earlier than one of those sent out.
Since the messages sent out are close in time to
GVT, the likelihood of them having to be re-
called is small. When (and if) the number of
events reaches Ngvt, SPEEDES switches to the
less risky Breathing Time Buckets phase.

In the BTB mode, a “local event horizon” for
each node is determined as the time stamp of the

earliest new event generated in the current cycle
on that node. Events processed beyond this time
may have to be rolled back. The global event
horizon is the minimum of all the local event
horizons over all nodes. Events are processed
optimistically but the messages they generate are
not sent out until the global horizon is reached,
so that the processing and messages are sent out
risk free (the processes will never have to be
rolled back and the messages will never have to
be cancelled with anti-messages). When the
global event horizon is reached, all nodes stop
their processing and a GVT update is done.

Following the GVT update phase, messages with
time tags less than GVT that have not yet been
sent are released (committed) and messages are
flushed out of the communications hardware.

Four input parameters are used in SPEEDES to
implement the event synchronization and control
[5]. These parameters (implemented in the
Breathing Time Warp algorithm) include:

Tgvt: Maximum seconds between GVT up-
dates (in terms of wall clock time).

Ngvt: The number of uncommitted events
processed before requesting a GVT up-
date.

Nrisk: The number of events processed beyond
GVT by each node that are allowed to
send their messages with risk.

Nopt: The number of events allowed to be
processed on each node beyond GVT.

The values chosen for these parameters (and
relations between them) effect the number of
rollbacks and anti-messages, thus directly im-
pacting performance.

Time Warp (TW)

Breathing Time Buckets (BTB)

Spin BusyGVT

Flush Msgs Commit

NORMAL SPEEDES CYCLE (0.1 -- 1.0 SEC)

TW BTB

Figure 1 – Breathing Time Warp event synchronization phases in SPEEDES

F05604-95-D-90013

There is a widely held belief (based on presenta-
tions and discussion with the SPEEDES devel-
opers) that over a wide range of values, changes
in these parameters have little effect on
SPEEDES performance (the so-called “bathtub”
effect). In light of the general nature of these
guidelines, most SPEEDES users are inclined to
use the default values for all problems.

This paper describes a study undertaken to ex-
plore the use of numerical multivariate minimi-
zation techniques to optimize these tuning pa-
rameters in order to enhance the simulation per-
formance. A follow-on study is underway to use
similar technique to find the optimum number of
processors across which the simulation should
be distributed. Finally, the feasibility of dynami-
cally adjusting the time synchronization pa-
rameters during the course of the simulation will
be evaluated.

Since the WG2K system was not expected to
exist by the time the study was to start, we
needed to develop tools to evaluate WG2K per-
formance under various synthetic loads. These
included the Aggregated Wait Time Model
(AWTM) [6] and a synthetic load builder tool
called ThreadBuilder (TB) [7]. Using the
AWTM, an analyst can quickly and easily gen-
erate a particular scenario of a future simulation
by specifying only a few top-level parameters
(number of threat missiles, aircraft, command
centers, interceptors, sensors, etc.) of a wargame.
The AWTM output is then reformatted into a
form that can be processed by SPEEDES and
input into the ThreadBuilder synthetic load gen-
erator which can estimate the performance of
WG2K for that scenario.

This tool suite was used to analyze WG2K per-
formance in a number of threat-sensor loading
scenarios (Figure 2) that are representative of
typical NMD scenarios. The scenario described
in a simple, unclassified, and generally realistic
manner the deployment time line of a threat mis-
sile attack, sensor detection, interceptor deploy-
ment, and engagement of the threat objects. This
scenario and some variants of it were processed
using the ThreadBuilder synthetic load generator
coupled with SPEEDES. This process allowed a
carefully controlled method of estimating how
WG2K may perform under similar loading con-
ditions.

In this performance evaluation, it was first nec-
essary to choose an appropriate measure of merit

from a number of possibilities. An obvious
choice is the elapsed wall clock time for the run.
Other choices include the number of rollbacks,
the CPU time utilized, and what is referred to as
the Simulation Time Advancement Rate or
STAR which is a measure of SPEEDES per-
formance that is directly tied to WG2K require-
ments. It indicates of how fast simulation time is
advancing with respect to wall clock time. At a
particular time in the simulation, for example, if
the STAR value is two, the simulation is running
twice as fast as real time. A STAR value of 0.5
indicates that the simulation is running at one-
half real time (i.e, slower than real time). In the

NMD scenario analysis runs for WG2K, the
STAR plots were one of the more useful overall
indicators of TB/SPEEDES performance for a
number of stressing scenarios.

The results of our runs show that the sensor
component of the NMD Aggregated Wait Time
Model is the most demanding of processor time.
The CPU loading depends directly on the num-
ber of threat objects seen by the sensor. The
STAR performance indicator generally follows
the simulated NMD sensor loads shown in Fig-
ure 2 (STAR varies inversely with loading).
When the sensors were lightly loaded (e.g. re-
porting few threat objects), STAR values were
large, often greater than 10, indicating the simu-
lation was running at 10 or more times real time.
As the scenario progressed through different
stages and the sensors began reporting more ob-
jects (with the concomitant additional processing
time and message traffic), the STAR values gen-
erally followed the number of threat objects
viewed by the sensors.

For the lighter load cases (which were run on a
single processor), the STAR indicator generally

Figure 2 – Scenario Timeline

F05604-95-D-90014

followed the loading as expected. However, for
heavier loads (four times as many threats) run on
multiple processors, the STAR often showed
erratic behavior. In addition, in some of these
cases the number of rollbacks did not track with
the STAR in a predictable fashion, as one would
expect. Moreover, several attempts to character-
ize the sensitivity of TB/SPEEDES performance
as a function of the time management tuning

parameters were inconclusive. Figure 3, for ex-
ample, is typical of the type of data generated in
this series of runs. Shown in the figure are sev-
eral curves showing how wall clock time varies
with the tuning parameter Ngvt at three values of

parameter Nrisk. It is not apparent what infor-
mation about the proper choice of these parame-
ters can be gleaned from these runs.

Since there was little clear and useful informa-
tion that could be derived from this series of
runs, a more controlled study was planned to
systematically evaluate TB/SPEEDES perform-
ance sensitivity to the tuning parameters.

APPROACH

The approach we used for evaluating SPEEDES
performance is illustrated in Figure 4. It used
standard numerical minimization methods such
as those described in Reference 8. We initially
used the PROX missile defense model as the
SPEEDES application instead of ThreadBuilder
for the investigations of performance sensitivity
with tuning parameters. For the analysis of per-
formance sensitivity with scenario loading, we
will use ThreadBuilder and SPEEDES. Rather
than simply running the SPEEDES application
over a wide range of tuning parameter values and
trying to interpolate what the optimum values of
the parameters should be, we instead used nu-
merical methods to generate the combination of
tuning parameters for a series of runs that pro-
gressively optimized SPEEDES performance. As
each run was completed, the resultant value of
some measure of merit (such as minimum STAR
or Wall Clock Time) was compared with the

 Wall Time vs. Nrisk and Ngvt

2050

2100

2150

2200

0 500 1000

Ngvt

Nrisk=100

Nrisk=200
Nrisk=400

Figure 3 – Wall clock time vs. tuning pa-
rameters Ngvt and Nrisk for a NMD sce-

nario with heavy loading

OPTIMIZATION APPROACH
Initial
cond

SPEEDES
ThreadBuilder

MINIMIZE

Script

DRIVER

GUI
Visualization

F i = Objective Function, e.g., Wall
Clock Time, STAR, Rollbacks, etc

Done
Criteria Met

F2-F1<ε

SPEEDES
PROX

Modified .par
files

New
conditions

New
value

“Newton Method”,
“Downhill Simplex”, etc.

YN
SPEEDES

MADSIM

Figure 4 – An automated approach for determining the optimum tuning values

F05604-95-D-90015

results using an earlier combination of parame-
ters. If the newer parameters yielded signifi-
cantly better (or worse) results, the minimization
process was called to recommend another set of
tuning parameters to try. When there is little or
no difference in the results between runs for dif-
ferent parameters, the process terminated with
the “optimum” values for the tuning parameters.

PRELIMINARY RESULTS

In order to test the feasibility of this approach, a
prototype version was implemented using algo-
rithms extracted from Reference 8. The method
chosen was the “Multivariate Downhill Simplex”
algorithm. A feature of this particular algorithm
is that it uses only the value of the objective
function (e.g., the wall clock time for the run) at
different points and does not require the first

derivative of the function. A simple driver pro-
gram was written in the manner shown in Figure
4 to call the minimization routine and change the
value in the “.par” file that PROX/SPEEDES
uses. The routine would then recommend new
values to try and the process was repeated until
no difference in performance was achieved be-
tween runs. The results of one of these optimi-
zation runs are shown in Figures 5 – 6 for a sce-
nario that was comprised of 8 missiles and 30
defense sensors. The optimization run was init i-
ated with the following values of SPEEDES
tuning parameters:

• Ngvt = 25
• Nrisk = 100
• Nopt = 500

Using this initial set of parameters, the wall
clock time used by the PROX/SPEEDES run
was 250 seconds (Figure 5).

Figure 6 shows how the intermediate values of
the three tuning parameters varied with each
iteration as the numerical algorithm sought to
maximize performance by minimizing the Wall
Clock time. At the conclusion of the optimiza-
tion process, after 58 iterations, the Downhill
Simplex method had arrived at a set of “opti-
mum” tuning parameters consisting of:

• Ngvt = 406
• Nrisk = 358

Figure 5 – Objective function (wall clock
time) at each iteration of the optimization

process

Figure 6 – The values of the tuning pa-
rameters recommended by the Downhill

Simplex minimization routine

F05604-95-D-90016

• Nopt = 18,357

The final PROX/SPEEDES run using these pa-
rameters took 226 seconds. By comparison with
the initial run, a 10% reduction in wall clock
time had been achieved for this relatively light
loading scenario. It seems likely that greater per-
formance increases can be gained for higher (and
more realistic) TAMD scenario loads.

DISCUSSION

This initial attempt to determine if choosing
better values of the time management tuning
parameters can optimize SPEEDES performance
produced promising results. We intend to expand
the effort to look at other scenario loads and
other minimization algorithms. We plan to im-
plement a modified version of the Newton meth-
ods, a simulated annealing algorithm, and others.

We also plan to expand the analysis to include
the affect of distributing the load across different
numbers of processors. Intuitively, we expect
there is an optimum number of processor to use
for each scenario loading. We further expect that
if that number is used, large performance bene-
fits can be achieved (greater than the 10% we
have seen so far for optimizing the tuning pa-
rameters).

PRODUCTS

This task has, and will continue to, produce a
number of important products that will benefit
WG2K developers. These include:

• A better understanding of MAD-
Sim/SPEEDES performance sensitivity with
the time synchronization parameters

• An understanding of how scenario loading
relates to time management parameters and
number of processors in determining
SPEEDES performance

• An evaluation of the utility of several nu-
merical minimization techniques in this ap-
plication

• A determination of the feasibility of dy-
namically optimizing the time management
parameters (i.e., during a single MAD-
Sim/SPEEDES run)

• A tool for enhancing MADSim/SPEEDES
performance prior to a wargame for a de-
fined scenario by optimizing time manage-
ment parameters and choosing the number
of processors to use

• A report describing the results of the task
• A demonstration capability that will show

the benefits of the optimization method

ACKNOWLEDGMENTS

Pat Talbot’s ideas on performance optimization
were the genesis of this task. Dennis Ellis wrote
the necessary scripts and driver program to im-
plement the approach. The assistance of Frank
Deis in understanding the concepts of parallel
discrete event simulations and performance met-
rics is gratefully acknowledged.

REFERENCES

1. Steinman, Jeff S., “SPEEDES: A Multiple-Synchronization Environment for Parallel Discrete-Event
Simulations.” International Journal in Co mputer Simulation, Vol. 2 Pages 251-286

2. Steinman, Jeff S., “Breathing Time Warp”, Jet Propulsion Laboratory, unpublished paper contained in
SPEEDES documentation package.

3. Jefferson, D., “Virtual Time.” ACM Transactions on Programming Languages and Systems. Vol. 7,
No. 3, Pages 404-425, 1985.

4. Steinman, Jeff S., “Multi-Node Test Bed: A Distributed Emulation of Space Communications for the
Strategic Defense System.” Proceedings of the Twenty-First Annual Pittsburgh Conference on Mod-
eling and Simulation, Vol. 21, Part 3. Pages 1111-1115, 1990.

5. Steinman, J., Lee, C., Wilson, L., and Nicol, D., “Global Virtual Time and Distributed Synchroniza-
tion”, unpublished paper contained in SPEEDES Documentation package

6. Eamon, J., “Theater Missile Defense Wargame Performance Requirements and Analysis Models,”
TISA 1999 Research Plan, March 1999

7. Eamon, J., “Theater Missile Defense Wargame Performance Requirements and Analysis Models,”
TISA 1999 Research Plan, March 1999

8. Numerical Recipes in FORTRAN: the art of scientific computing, William H. Press et. al., 2nd edition,
Cambridge Press, 1992

